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Abstract By using the methods of operator theory, all boundedly solvable extensions
ofminimal operator generated byfirst order functional differential-operator expression
in the Hilbert space of vector-functions on finite interval have been described. The
operator framework is also applied to the study of structure of spectrums of these
extensions. Applications of obtained results to the concrete models are illustrated.
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1 Introduction

It is known that the equation dx
dt = F(x), x = x(t)with an operator F defined on a set

of absolutely continuous functions is called the functional differential equation (see
[1]). Many problems arising in biology, economy, control theory, electrodynamics,
chemistry, ecology, epidemiology, tumor growth, neural networks and etc. is reduced
the study of boundary value problems for functional differential equations for first and
second order in different functional spaces.
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The quantitative and qualitative theory of such equations have been studied in many
works (for example, see [1–6]). Functional differential equations arises in many areas
of science and technology. Solvability of such equations and connected problems it
is indisputable. It is known that many of mathematical problems in chemistry are
expressed by functional differential equations with auxiliary boundary conditions.
The problem in chemical reactions [7–9], chemical kinetics [10–13], in modelling of
problems in theory of genetic regulation [14] and etc. can be expressed by time-delay
functional differential equations. For example, the effect of a controlled delay on a
chemical oscillator is described by functional differential equations (see [8]). The
functional differential equations arising from the assumed mechanism together with
flow terms are in form

Ċ = f (C) + k0(C0 − C),

where f ( . ) is the kinetic rate law, the C0 is the in-flow concentration and k0 is the
flow rate constant. Numerically solutions of above differential equation have been
investigated in [7].

Note that many fundamental laws of chemistry can be formulated by ordinary and
functional differential equations.

In thiswork, the operator theory framework, the boundedly solvability and spectrum
structure for wide class functional differential equations for first order in the Hilbert
space of vector-functions on finite interval. For example, such investigations for the
some retarded-type functional differential equations have been done in works [15–19].

The first work in area of extension of linear densely defined operator in a Hilbert
space belongs to von Neumann. In his paper [20] all the selfadjoint extensions of
the linear densely defined having equal and nonzero deficiency indexes symmetric
operator in any Hilbert space have been described. But in 1949 and 1952 Vishik the
boundedly (compact, regular and normal) invertible extensions of any unbounded lin-
ear operator in a Hilbert space have been established in works [21,22] and these results
by Otelbayev, Kokebaev and Shynybekov have been generalized to the nonlinear oper-
ators and complete additive Hausdorff topological spaces in abstract terms in works
[23,24]. Dezin [25] give a general methods for the description of regular extensions
for some classes of linear differential operators in the Hilbert space of vector-functions
at finite interval.

In 1985 by Pivtorak [26] and Ismailov [27] all solvable extensions of a minimal
operator generated by linear parabolic and hyperbolic type differential expressions for
first order with constant unbounded or continuously dependent selfadjoint operator
coefficients in Hilbert space of vector-functions at finite interval in terms of boundary
values were given, respectively.

In the studies discussed above the coefficients of differential expressions have been
taken for special classes of operators in corresponding functional space. Unfortunately,
in many cases representation of functional differential expression is not possible with
remarkable coefficient, then mentioned above methods are not applicable to the study
of these problems. On the other hand in noted above works spectral investigations
have not been done.
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Let us remember that an operator T : D(T ) ⊂ H → H in Hilbert space H is
called boundedly solvable, if T is one-to-one, T D(T ) = H and T−1 ∈ L(H).

In this work, in Sect. 2, by using methods of operator theory all boundedly by
solvable extensions of minimal operator generated by some functional differential-
operator expression for first order in the Hilbert space of vector-functions at a finite
interval have been described in terms of boundary values. Structure of the spectrums
of these extensions has been given in Sect. 3. Lastly, in Sect. 4 the obtained results
have been supported by applications.

2 Description of boundedly solvable extensions

In the Hilbert space L2(H, (0, 1)) of vector-functions consider a linear functional
differential-operator expression for first order in the form

l(u) = u′(t) +
n∑

m=1

Am(t)u
(
αm |t − λm |γm )

, (1)

where:

(1) H is a separable Hilbert space with inner product (, . , )H and norm ‖ . ‖H ;
(2) For eachm, 1 ≤ m ≤ n operator-function Am( . ) : [0, 1] → L(H) is continuous

on the uniformly operator topology;
(3) For m = 1, 2, . . . , n, 0 < αm ≤ 1, 0 ≤ λm ≤ 1 and 0 < γm ≤ 1.

On the other hand, the following simple differential expression will be considered

m(u) = u′(t) (2)

in the Hilbert space L2(H, (0, 1)) corresponding to (1).
By the standard way the minimal M0 and maximal M operators corresponding to

(2).
Now define an operator P(αm, λm, γm) in L2(H, (0, 1)) in a form

P(αm, λm, γm)u(t) = u
(
αm |t − λm |γm )

, u ∈ L2(H, (0, 1)), m = 1, 2, . . . , n

Then for u ∈ L2(H, (0, 1)) and for m = 1, 2, . . . , n it is obtained that

‖P(αm, λm, γm)u‖2L2(H,(0,1)) =
1∫

0

‖u (
αm |t − λm |γm ) ‖2Hdt

=
λm∫

0

‖u (
αm |t − λm |γm ) ‖2Hdt

123



2068 J Math Chem (2015) 53:2065–2077

+
1∫

λm

‖u (
αm |t − λm |γm ) ‖2Hdt

=
λm∫

0

‖u (
αm (λm − t)γm

) ‖2Hdt

+
1∫

λm

‖u (
αm |t − λm |γm ) ‖2Hdt

= 1

γm

(
1

αm

) 1
γm

αm (λm )γm∫

0

‖u(x)‖2H x
1−γm
γm dx

+ 1

γm

(
1

αm

) 1
γm

αm (1−λm )γm∫

0

‖u(x)‖2H x
1−γm
γm dx

≤ 2

γm

(
1

αm

) 1
γm ‖u‖2L2(H,(0,1))

So for each m = 1, 2, . . . , n

P(αm, λm, γm) ∈ L(L2(H, (0, 1)))

and

‖P(αm, λm, γm)‖ ≤
√

2

γm

(
1

αm

) 1
2γm

Consequently, the operator

A(t;α, λ, γ ) =
n∑

m=1

Am(t)P(αm, λm, γm)

is a linear bounded operator in L2(H, (0, 1)).
Along of this work the following defined operators

L0 := M0 + A (t;α, λ, γ ) ,

L0 : o
W

1

2(H, (0, 1)) ⊂ L2(H, (0, 1)) → L2(H, (0, 1))

L := M + A (t;α, λ, γ ) ,

L : W 1
2 (H, (0, 1)) ⊂ L2(H, (0, 1)) → L2(H, (0, 1))
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will be called theminimal andmaximal operators corresponding to differential expres-
sion (1) in L2(H, (0, 1)), respectively.

Now let U (t, s), t, s ∈ [0, 1] be the family of evolution operators corresponding
to the homogeneous differential equation

{
∂U
∂t (t, s) f + A (t;α, λ, γ )U (t, s) f = 0, t, s ∈ [0, 1],

U (s, s) f = f, f ∈ H

The operator U (t, s), t, s ∈ [0, 1] is a linear continuous, boundedly invertible in H
and

U−1(t, s) = U (s, t), s, t ∈ [0, 1]

(for more detailed analysis of this concept see [28]).
Let us introduce the operator

Uz(t) := U (t, 0)z(t), U : L2(H, (0, 1)) → L2(H, (0, 1))

In this case it is easy to see that for the differentiable vector-function z ∈
L2(H, (0, 1)), z : [0, 1] → H satisfies the following relation:

l(Uz) = (Uz)′(t) + A (t;α, λ, γ )Uz(t)

= Uz′(t) + (U ′
t + A (t;α, λ, γ )U )z(t) = Um(z)

From this U−1l(Uz) = m(z). Hence it is clear that if L̃ is some extension of the
minimal operator L0, that is L0 ⊂ L̃ ⊂ L, then

U−1L0U = M0, M0 ⊂ U−1LU = M̃ ⊂ M, U−1LU = M

For example, prove the validity of the last relation. It is known that

D(M0) = o
W

1

2(H, (0, 1)), D(M) = W 1
2 (H, (0, 1)),

If u ∈ D(M), then l(Uz) = Um(z) ∈ L2(H, (0, 1)) that is Uu ∈ D(L). From the
last relation M ⊂ U−1LU . Contrarily, if a vector-function u ∈ D(L), then

m(U−1v) = U−1l(v) ∈ L2(H, (0, 1)),

that is, U−1v ∈ D(M). From last relation U−1L ⊂ MU , that is U−1LU ⊂ M .
Hence, U−1LU = M .

It is easy to prove the following assertion.

Lemma 2.1 ker L0 = {0} and R(L0) �= L2(H, (0, 1)).
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Theorem 2.1 Each solvable extension L̃ of the minimal operator L0 in L2(H, (0, 1))
is generated by the functional differential-operator expression (1) and boundary con-
dition

(K + E)u(0) = KU (0, 1)u(1), (3)

where K ∈ L(H) and E is an identity operator in H. The operator K is determined
uniquely by the extension L̃, i.e L̃ = LK .

On the contrary, the restriction of the maximal operator L0 to the manifold of
vector-functions satisfies the condition (3) for some bounded operator K ∈ L(H) is
a solvable extension of the minimal operator L0 in the L2(H, (0, 1)).

Proof Firstly, all solvable extensions M̃ of the minimal operator M0 in L2(H, (0, 1))
in terms of boundary values is described.

Consider the following so-called Cauchy extension Mc

Mcu = u′(t), u(0) = 0,

Mc : D(Mc) = {u ∈ W 1
2 (H, (0, 1)) : u(0) = 0} ⊂ L2(H, (0, 1)) → L2(H, (0, 1))

of the minimal operator M0. It is clear that Mc is a solvable extension of M0 and

M−1
c f (t) =

t∫

0

f (x)dx, f ∈ L2(H, (0, 1)),

M−1
c : L2(H, (0, 1)) → L2(H, (0, 1))

Now assume that M̃ is a solvable extension of the minimal operator M0 in
L2(H, (0, 1)). In this case it is known that the domain of M̃ can be written in direct
sum in form

D(M̃) = D(M0) ⊕ (M−1
c + K )V,

where V = kerM = H, K ∈ L(H) [21,22]. Therefore for each u(t) ∈ D(M̃) it is
true that

u(t) = u0(t) + M−1
c f + K f, u0 ∈ D(M0), f ∈ H

That is u(t) = u0(t) + t f + K f, u0 ∈ D(M0), f ∈ H . Hence u(0) = K f, u(1) =
f + K f = (K + E) f . Hence u(0) = K f, u(1) = f + K f = (K + E) f and from
these relations it is obtained that

(K + E)u(0) = Ku(1) (4)

On the other hand, uniqueness of operator K ∈ L(H) follows from [21]. Therefore,
M̃ = MK . This completes the necessary part of this assertion.
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On the contrary, if MK is an operator generated by differential expression (2) and
boundary condition (4), then MK is bounded, boundedly invertible and

M−1
K : L2(H, (0, 1)) → L2(H, (0, 1)),

M−1
K f (t) =

t∫

0

f (x)dx + K

1∫

0

f (x)dx, f ∈ L2(H, (0, 1)).

Consequently, all solvable extensions of the minimal operator M0 in L2(H, (0, 1)) is
generated by differential expression (2) and boundary condition (4) with any linear
bounded operator K .

Now consider the general case. For this in the L2(H, (0, 1)) introduce an operator
in the form

U : L2(H, (0, 1)) → L2(H, (0, 1)), (Uz)(t) := U (t, 0)z(t), z ∈ L2(H, (0, 1))

From the properties of the family of evolution operators U (t, s), t, s ∈ [0, 1] it is
implied that an operator U is linear bounded, has a bounded inverse and

(U−1z)(t) = U (0, t)z(t).

On the other hand, from the relations

U−1L0U = M0,U
−1 L̃U = M̃,U−1LU = M (5)

it is implied that an operator U is a one-to-one between sets of solvable extensions of
minimal operators L0 and M0 in L2(H, (0, 1)).

The extension L̃ of the minimal operator L0 is solvable in L2(H, (0, 1)) if and only
if the operator M̃ = U−1 L̃U is an extension of the minimal M0 in L2(H, (0, 1)).
Then, u ∈ D(L̃) if and only if

(K + E)U (0, 0)u(0) = KU (0, 1)u(1),

that is, (K + E)u(0) = KU (0, 1)u(1). This proves the validity of the claims in the
theorem. 
�
Corollary 2.1 In particular the resolvent operator Rλ(LK ), λ ∈ ρ(LK ) of any
solvable extension LK of the minimal operator L0, generated by pantograph-type
functional differential expression

l(u) = u′(t) + A(t)u(αt), 0 < α < 1

with boundary condition

(K + E)u(0) = KU (0, 1)u(1),
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in L2(H, (0, 1)) is of the form

Rλ(LK ) f (t) = U (t, 0)[(E + K (1 − exp(λ))−1)K

1∫

0

exp(λ(1 − s))U (0, s) f (s)ds

+
t∫

0

exp(λ(1 − s))U (0, s) f (s)ds], f ∈ L2(H, (0, 1))

3 Spectrum of boundedly solvable extensions

In this section, the spectrum structure of solvable extensions of minimal operator L0
in L2(H, (0, 1)) will be investigated.

Firstly, prove the following fact.

Theorem 3.1 If L̃ is a solvable extension of aminimal operator L0 and M̃ = U−1 L̃U
corresponds for the solvable extension of a minimal operator M0, then the spectrum
of these extensions is true σ(L̃) = σ(M̃).

Proof Consider a problem to the spectrum for a solvable extension LK of a minimal
operator L0 generated by functional differential-operator expression (1), that is

LKu = λu + f, λ ∈ C, f ∈ L2(H, (0, 1))

From this it is obtained that

(LK − λE)u = f

or (UMKU−1 − λE)u = f . Hence U (MK − λ)(U−1u) = f .
Therefore, the validity of the theorem is clear.
Now prove the following result for the spectrum of solvable extension. 
�

Theorem 3.2 If LK a solvable extension of the minimal operator L0 in the space
L2(H, (0, 1)), then spectrum of LK has the form

σ(LK )=
{
λ ∈ C :λ= ln |μ+1

μ
|+i arg

(
μ+1

μ

)
+2nπ i, μ ∈ σ(K )\{0,−1}, n ∈ Z

}

Proof Firstly, the spectrum of the solvable extension MK = U−1LKU of the minimal
operator M0 in L2(H, (0, 1)) will be investigated.

Consequently, consider the following problem for the spectrum, that is, MKu =
λu + f , λ ∈ C , f ∈ L2(H, (0, 1)). Then

u′ = λu + f,

(K + E)u(0) = Ku(1), λ ∈ C, f ∈ L2(H, (0, 1)), K ∈ L(H)
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It is clear that a general solution of the above differential equation in L2(H, (0, 1))
has the form

uλ(t) = exp(λt) f0 +
t∫

0

exp(λ(1 − s)) f (s)ds, f0 ∈ H

Therefore, from the boundary condition (K + E)uλ(0) = Kuλ(1) it is obtained that

(E + K (1 − exp(λ))) f0 = K

1∫

0

exp(λ(1 − s)) f (s)ds (6)

For λm = 2mπ i, m ∈ Z from the last relation it is established that

f (m)
0 = K

1∫

0

exp(λm(1 − s)) f (s)ds, m ∈ Z

Consequently, in this case the resolvent operator of MK is in the form

Rλm (MK ) f (t) = K exp(λmt)

1∫

0

exp(λm(1 − s)) f (s)ds

+
t∫

0

exp(λ(1 − s)) f (s)ds, f ∈ L2(H, (0, 1)), m ∈ Z

On the other hand, it is clear that Rλm (MK ) ∈ B((L2(H, (0, 1)), m ∈ Z.
Now assume that λ �= 2mπ i, m ∈ Z, λ ∈ C. Then using the Eq. (6) we have

(
K − 1

exp(λ) − 1
E

)
f0 = 1

1 − exp(λ)
K

1∫

0

exp(λ(1 − s)) f (s)ds,

f0 ∈ H, f ∈ L2(H, (0, 1)

Therefore, for λ ∈ σ(MK ) if and only if

μ = 1

exp(λ) − 1
∈ σ(K )

In this case since μ �= 0

exp(λ) = μ + 1

μ
, μ ∈ σ(K ) and μ �= −1
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Then

λn = ln

∣∣∣∣
μ + 1

μ

∣∣∣∣ + iarg

(
μ + 1

μ

)
+ 2nπ i, n ∈ Z

Later on, using the last relation and Theorem 3.1 the validity of the claim in theorem
is proved. 
�

4 Applications

Example 4.1 Consider the following boundary value problem for the functional dif-
ferential equation in form

{
u′(t) = a(t)u(

√
t), 0 < t < 1, a ∈ C1[0, 1]

u(0) = u0

In order to solve this problem change the unknown function u(t) by

y(t) = u(t) − u0, 0 < t < 1

Then we have

{
y′(t) = a(t)y(

√
t) + a(t)u0

y(0) = 0

The last boundary value problem can be interpretated as the solution of functional
differential equation in Hilbert space L2(0, 1)

{
Lcy(t) = a(t)u0, 0 < t < 1
y(0) = 0

where Lcy(t) = y′(t) − a(t)y(
√
t). Hence solution of above Cauchy problem by

Corollary 2.1 can be analytically represented in the following form

y(t) = L−1
C (a(t)u0) =

t∫

0

U (0, s)a(s)dsu0

Consequently,

u(t) =
t∫

0

U (0, s)a(s)dsu0 + u0, 0 < t < 1.
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HereU (t, s), t, s ∈ [0, 1] is a family of evolution operators corresponding to problem

{
∂
∂t U (t, s) f − a(t)PαU (t, s) f = 0,
U (s, s) f = f, f ∈ C

with Pαu(t) = u(
√
t), Pα : L2(0, 1) → L2(0, 1).

In general by Theorem 2.1 all boundedly solvable extensions Lk of the minimal
operator L0 generated by l(u) = u′(t) − a(t)u(

√
t), 0 < t < 1 in L2(0, 1) are

described l( . ) with boundary condition

(k + 1)u(0) = kexp

⎛

⎝
1∫

0

a(s)Pαds

⎞

⎠ u(1), k ∈ C

In addition, the resolvent operator of these extensions is in the form

Rλ(Lk) f (t) = exp

⎛

⎝
t∫

0

a(s)Pαds

⎞

⎠

⎡

⎣(1 + k(1 − eλ)−1)k

1∫

0

exp

⎛

⎝λ(1 − s) −
s∫

0

a(x)Pαdx

⎞

⎠ f (s)ds

+
t∫

0

exp

⎛

⎝λ(t−s)−
s∫

0

a(x)Pαdx

⎞

⎠ f (s)ds

⎤

⎦ , λ∈ρ(Lk), f ∈ L2(0, 1)

Moreover for k �= 0,−1, k ∈ C spectrum of this extension Lk is in the form,

σ(Lk) =
{
λ ∈ C : λ = ln

∣∣∣∣
k + 1

k

∣∣∣∣ + i arg

(
k + 1

k

)
+ 2nπ i, n ∈ Z

}
.

Example 4.2 All boundedly solvable extensions of minimal operator generated by
functional differential expression

l(u) = ∂u(t, x)

∂t
+ x2u(

√
t,

√
1 − x), 0 < t, x < 1

in the Hilbert space L2((0, 1) × (0, 1)) are described by this l( . ) and boundary con-
dition

(K + E)u(0, x) = KU (0, 1)u(1, x),

where K is 2× 2-matrix and U (t, s), t, s ∈ [0, 1] is an operator solution of equation
{

∂U
∂t (t, s) f + x2P1P2U (t, s) f = 0, t, s ∈ [0, 1],
U (s, s) f = f, f ∈ C
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where P1u(t, x) = u(
√
t, x), P2u(t, x) = u(t,

√
1 − x), P1, P2 : L2((0, 1) ×

(0, 1)) → L2((0, 1) × (0, 1)).

Remark 4.3 In special case of αm, λm and γm, m = 1, 2, . . . , n the analogous prob-
lems considered in this work have been investigated in papers [29–31].
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